If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+30x-50=0
a = 4; b = 30; c = -50;
Δ = b2-4ac
Δ = 302-4·4·(-50)
Δ = 1700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1700}=\sqrt{100*17}=\sqrt{100}*\sqrt{17}=10\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-10\sqrt{17}}{2*4}=\frac{-30-10\sqrt{17}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+10\sqrt{17}}{2*4}=\frac{-30+10\sqrt{17}}{8} $
| 7x+9-9x-19=180 | | x+x+115+20=180 | | 260000*0.12^n=20060.31 | | 20x2−30x=2x+45 | | m=420+25 | | q–1=7 | | 6x−10=3x+4 | | m^2=56 | | z/4-28=-19 | | 4x-3=7x+2 | | X^3=x2+20x | | 5(j+7)=55 | | x/5=-5/2 | | 98=7(q-73) | | 9n-14=31 | | 11x=38/11 | | 260000*12^n=20060.31 | | 9n−14=31 | | -48(j)=6 | | 32x+1=2187 | | -5=n/2+-8 | | 4x=1x+25 | | j-77/3=6 | | 55x-35=23 | | 13v=81/13 | | 19+3m=73 | | y=2.5=-4 | | 4,040-70x=12,500 | | 2d+24=82 | | 3(x+2)=7(x-3) | | h/2+9=12 | | 5(4x+1)=20x-5 |